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I. INTRODUCTION

Field emission [1–4] generally plays an essential role
as a mechanism of electron generation in vaccuum elec-
tronic technology, being an active topic of research [5–
7] of fundamental importance to different scientific and
technological applications [8–12]. This happens due to
the many advantages of field emission cathodes over the
thermionic ones, avoiding issues related to temperature
operation and temporal response. For these reasons, it
is expected that the next generation of high performance
field emission systems, to be used in vaccuum technolog-
ical applications, will be based on field emission [13, 14].

In particular, Large Area Field Emitters (LAFEs) are
of great interest to many different technological appli-
cations related to vacuum nanoelectronic devices, such
as: high-brightness electron sources [5], high power mi-
crowave vacuum devices [15] and x-ray generators [16].
Most of these applications involve the use of carbon nan-
otubes [7, 17, 18]. LAFEs are frequently characterized
by their capability to amplify an externally applied elec-
trostatic field, which is essential to achieve a good field
emission performance. This capability may be expressed
by means of the concept of local Field Enhancement Fac-
tor (FEF), consisting of the ratio between the absolute
values of the electrostatic field at some point on the sur-
face of the emitter, E, and the electrostatic applied field
far away from the emitter, E0:

γ =
|E|
|E0|

. (1)

The FEF on the apexes of the emitter’s sites of a LAFE
may be obtained through a Fowler-Nordheim plot [19],
if the emission is orthodox [20], when the LAFE consists
of emitters with regular apexes and similar shapes. The-
oretical and phenomenological studies estimating FEF-
values or their qualitative behave in LAFEs or for Single
Tip Field Emitters (STFEs) are also frequent in the lit-
erature concerning field emission [21–29]

In a LAFE the FEF on the apexes of the emitter’s sites
tends to be smaller, compared to the case of a single emit-
ter, due to the electrostatic repulsion between the charge

densities on each site. For this reason the FEF decreases
as different sites become closer to each other, forming a
cluster. This phenomenon is well known in the literature
as screening, shielding or depolarization [22, 30–36] and
plays a major role in applications involving LAFEs. The
screening is responsible for higher FEF values in the bor-
ders, providing a non-uniform emission along the LAFE
[30]. As expected, as the spacing between the emitter’s
sites in a LAFE increases, the FEF on the apex of each
site tends to increase and asymptoticaly converge to the
FEF of a single site for large distances. Different sur-
veys in the literature suggest that some universal laws
may provide a good approximation for the fractional re-
duction of the apex FEF both for short distances, com-
parable to the dimensions of the emitter, and for large
distances. The fractional reduction, −δ, is defined by the
following equation

− δ =
γ1 − γ
γ1

, (2)

where γ is the apex FEF of the site in a LAFE or in the
case of two emitters and γ1 is the same FEF evaluated
when only a single emitter site is present.

Considering the Hemisphere over Cylindrical Post
(HCP) model, some works [37, 38] suggest that when
the distance between emitters, d, is from the same order
of their heights, h, the fractional reduction may be well
approximated by an exponential law:

− δ = Ae−
Bd
h , (3)

with A = 1 and B ≈ 2.3172. A work using line-charge
model [39] for post emitters finds a better fitting gener-
alizing Eq. (3) to

− δ = Ae−B( d
h )n , (4)

with A = 1. On the other hand, for a large distance
between the emitters and considering a simplified version
of the HCP model, Ref. [34] suggests that the fractional
reduction obeys a power-law:

− δ = A

(
R

l

)(
l

d

)3

, (5)
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Abstract: The Schwarz-Christoffel transformation is used to analytically evaluate the Field Enhancement Factor (FEF)
in the vicinity of the upper corner of two infinite rectangular emitters close to each other. It is showed that the fractional
reduction between the apex-FEF of a single emitter and this same FEF evaluated when another identical emitter is
placed close to it, −δ, may be well described by an exponential or a power-law behaviour involving the ratio between the
distance of the emitters to each other and their heights. This way the analytical model presented here intends to
investigate the existence of universal depolarization laws for emitters used in different scientific and technological
applications involving Large Area Field Emitters (LAFEs).
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with A = 2 and where l corresponds to the height of the
cylinder, R to the radius of the cylinder and the hemi-
sphere and d is the distance between the emitters. Thus,
h = l+R corresponds to the height of the emitters. This
cubic law has also been found in other works in the lit-
erature [40–42].

The present survey investigates the robustness of these
laws by testing their validity in a particular two dimen-
sional system, which is amenable to an analytical treat-
ment by means of the conformal mapping technique,
frequently used in the literature of field emission [26–
28, 33, 36]. More specifically, it is considered a system of
two rectangular emitters with infinite length and height
h at a distance d from each other, see Fig. 1. The electro-
static shielding in this system has already been studied
in Ref. [33] by means of FEF evaluation along the emit-
ter but the validity of the aforementioned laws for the
fractional reduction was not investigated there. In the
present work, the fractional reduction of the FEF close
to the upper corner of each emitter in Fig. 1 is evalu-
ated by means of the Schwarz-Christoffel transformation
[43, 44] and the validity of the aforementioned laws for
the fractional reduction is assessed.

At this point it is important to stress that this survey
does not intend to predict FEF values for real three-
dimensional emitters, since conformal mapping tech-
niques only work in two dimensions. Nevertheless, it
is expected that some qualitative aspects in the three-
dimensional scenario may be investigated and well un-
derstood in two dimensions. For instance, it is possible
to investigate if the laws given by Eq. (3) and Eq. (5)
remain valid in the absence of radial symmetry, which
is the case of the emitter showed in Fig. 1. This is the
purpose of this article.

In the next section part of the calculations outlined
in Ref. [33] is reviewed and the FEF close to the upper
corner of the emitter in Fig. 1 is evaluated by means of
the Schwarz-Christoffel transformation, than the same
evaluation is performed when only a single emitter is
present, in the absence of shielding. In Sec. III the plots
of the FEF and the corresponding fractional reduction
are showed and the fitting to the aforementioned laws is
assessed. In the last section the conclusions and perspec-
tives of this manuscript are presented.

FIG. 1. The conducting system in the z-plane (z = x + iy)
consisting of two rectangular emitters of height h and infinite
length. The distance between the emitters is d.

II. A BRIEF REVIEW OF THE MODEL AND
FEF EVALUATION

In the this section the FEF on the right upper corner of
the emitter showed in Fig. 1 is evaluated by means of the
Schwarz-Christoffel transformation. Than the same eval-
uation is performed when only a single emitter is present.

A. The characteristic FEF of two rectangular
emitters with infinite length

FIG. 2. Pre-image in the complex w-plane (w = u + iv) of
the emitter showed in Fig. 1. The points A, B, B′, C and C′

are mapped to the points with the same labels in Fig. 1.

The Schwarz-Christoffel transformation mapping the
real axis in the w-plane, see Fig. 2, to the polygonal line
in Fig. 1 is given by the following expression:

z(w) = A

∫ w

0

√
w2 − 1

w2 − u2
dw +B, (6)

where the following correspondences are fullfiled: z(w =
0) = 0, z(w = ±u) = ±d

2 and z(w = ±1) = ±d
2 + ih.

The transformation was chosen to be symmetric around
the imaginary axis, justifying the first correspondence.
Thus, according to Riemann Mapping Theorem [45], it
remains for two pre-images to be chosen, one is given by
the last correspondence, w = 1, and the other is the pre-
image of infinity at infinity. The pre-image w = u should
be determined from the respective correspondence. The
first correspondence determines B = 0 and the other cor-
respondences lead to the following equations:

A =
d

2
∫ u

0

√
1−w2

u2−w2 dw
, (7)

A =
h∫ 1

u

√
1−w2

w2−u2 dw
. (8)

These equations may be combined to determine u as a
solution of the following equation:

d

2h
=

∫ u

0

√
1−w2

u2−w2 dw∫ 1

u

√
1−w2

w2−u2 dw
. (9)

Science Academique
de Carvalho Neto EM.
Pages: 1-07
 

Volume 2; Issue: 01
Article ID: SA2114
 



3

The FEF at some point in the z-plane, image of a point
w = u+ iv in the w-plane, is given by

γ(w) =

∣∣∣∣ dzdw
∣∣∣∣−1

=

√
|w2 − u2|
|w2 − 1|

. (10)

Thus, in the vicinity of the upper corner in the right side
of the emitter (z → d

2 + ih⇒ w → 1), one obtains:

γ(w) ≈

√
1− u2

2|w − 1|
. (11)

Still in the vicinity of the same corner, Eq. (6) leads to∣∣∣∣z(w)−
(
d

2
+ ih

)∣∣∣∣ ≈ 23/2A

3
√

1− u2
|w − 1|3/2. (12)

By combining the last pair of equations and using Eq.
(7), it is possible to find the expression of the FEF at
some point (x, y) in the vicinity of the aforementioned
corner (d/2, h):

γ(x, y) =

 d(1− u2)

6ξ(x, y)
∫ u

0

√
1−w2

u2−w2 dw

1/3

, (13)

where ξ(x, y) is the distance from the corner to the point
(x, y) where the FEF is evaluated:

ξ(x, y) ≡
∣∣∣∣z(w)−

(
d

2
+ ih

)∣∣∣∣ =

=

√(
x− d

2

)2

+ (y − h)2, (14)

and u is obtained from Eq. (9).

B. The characteristic FEF of a single rectangular
emitter with infinite length

FIG. 3. The conducting system in the z-plane (z = x + iy)
consisting of a single rectangular emitter of height h and in-
finite length.

The Schwarz-Christoffel transformation mapping the
real axis in the w-plane, see Fig. 4, to the polygonal line
in Fig. 3 is given by the following expression:

z(w) = A

∫ w

0

√
w − 1

w
dw +B, (15)

FIG. 4. Pre-image in the complex w-plane (w = u+ iv) of the
emitter showed in Fig. 3. The points A and B are mapped
to the points with the same labels in Fig. 3.

where the correspondences z(w = 0) = 0 and z(w = 1) =
ih are chosen based on the Riemann Mapping Theorem
[45]. The first of these correspondences allows to deter-
mine the parameter B, than the second one allows to find
A:

B = 0, (16)

A =
2h

π
. (17)

The FEF at some point in the z-plane in Fig. 3, image
of a point w = u + iv in the w-plane in Fig. 4, is given
by

γ1(w) =

∣∣∣∣ dzdw
∣∣∣∣−1

=
|w|1/2

|w − 1|1/2
. (18)

Thus, close to upper corner in Fig. 3 (w → 1), Eq. (15)
and Eq. (18) lead to

|z(w)− ih| ≈ 4h

3π
|w − 1|3/2, (19)

γ1(w) ≈ |w − 1|−1/2. (20)

Finally, by combining the last pair of equations, one ob-
tains:

γ1(x, y) ≈
[

4h

3πη(x, y)

]1/3
, (21)

where η(x, y) = |z − ih| =
√
x2 + (y − h)2 corresponds

to the distance from the point (x, y), where the FEF is
evaluated, to the upper corner in Fig. 3. Eq. (13) and
Eq. (21), with u obtained as a solution from Eq. (9),
allow to determine the fractional reduction by means of
Eq. (2).

III. RESULTS

As mentioned in the end of the last section, Eq. (2),
Eq. (9), Eq. (13) and Eq. (21) allow to determine the
FEF and the fractional reduction near the right upper
corner of the emitter in Fig. 1. In this section these
quantities will be plotted as a function of the ratio involv-
ing the distance between the emitters and their heights
(d/h). Than the logarithm of the fractional reduction
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will be plotted as a function of d/h and log(d/h) in or-
der to show whether the laws given by Eq. (3) and Eq.
(5) provide a good description of the fractional reduction
at different regimes. The Napierian logarithms will sim-
ply be denoted by ”log” (the base is omitted) along the
present manuscript.

In Fig. 5 the FEF in the vicinity of the point C in
Fig. 1 is showed. As expected, the FEF increases as long
as the ratio d/h increases due to the reduction of the
shielding. The dashed line shows this same FEF when
only a single emitter is present, as showed in Fig. 3.
One can see that for very large distances between the
emitters the FEF tends to the one in the case of a single
emitter, showing the consistency of the evaluation per-
formed in the present survey. In Fig. 6 the fractional
reduction of the FEF close to the right upper corner of
the emitter in Fig. 1 is showed. The fractional reduction
decreases monotonically with the distance between the
emitters due to shielding and tends to zero for very large
distances, showing the same consistency of the calcula-
tions discussed in Fig. 5.

10 20 30 40

d

h

5

10

15

γ

FIG. 5. FEF in the vicinity of the right upper corner of the
emitter in Fig. 1 for ξ(x, y) = 0.0001. The (red) dashed line
corresponds to the same FEF (η(x, y) = 0.0001) in the case
of a single emitter showed in Fig. 3.
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FIG. 6. Fractional reduction of the FEF in the vicinity of
the right upper corner of the emitter showed in Fig. 1 for
ξ(x, y) = η(x, y) = 0.0001.

In Fig. 7 and Fig. 8 the filled lines show the logarithm
of the fractional reduction as a function of the ratio d/h.
The dashed line in Fig. 8 corresponds to a linearization
of the data contained in twenty equidistant points of the
filled line in this plot. One can see that, for values of the

distance between the emitters close to their heights, the
plot is approximately linear. This is easier to see in Fig.
8, reinforcing the validity of Eq. (3) as a reasonable ap-
proximation in this regime. Nevertheless, although this
linearization is able to provide a good fitting to the frac-
tional reduction, it does not provide a perfect description
of the system, showing that the approximation in Eq. (3)
is limitted.

10 20 30 40

d

h

-5

-4

-3

-2

-1

log(-δ)

FIG. 7. Logarithm of the fractional reduction in the vicinity
of the right upper corner of the emitter showed in Fig. 1 as a
function of the ratio d/h for ξ(x, y) = η(x, y) = 0.0001.

In Fig. 9 and Fig. 10 the filled lines show the logarithm
of the fractional reduction as a function of the logarithm
of the ratio d/h. The dashed line in Fig. 10 corresponds
to the linearization of twenty equidistant points in the
filled line of this plot. One may see that for large values
of d/h the plot becomes linear, as it is easier to see in Fig.
10, reinforcing the validity of Eq. (5) for large values of
the ratio d/h. Fig. 10 shows that the linearization of the
plot in Fig. 9 for large distances is coincident with the
original plot, suggesting that Eq. (5) provides a better
description of the fractional reduction for large distances
than Eq. (3) for small distances and that the fractional
reduction for asymptotically large distances between the
emitters corresponds indeed to a power-law decay. Al-
though in the three-dimensional scenario this power-law
corresponds to a cubic decay [34, 40–42], the exponent of
the power-law in the present survey is approximatelly
given by 1.12. This is not surprising since the FEF
presents a logarithmic dependence with the curvature of
the emitter in two dimensions, which differs from the
power-law dependence in the three-dimensional case.

Although the plots and linearizations showed along
this mansucript suggest the validity of the aforemen-
tioned laws, given by Eq. (3) and Eq. (5), the values
of the parameters obtained here blatantly differ from the
ones in the literature. This difference is expected, since
the models studied here are two-dimensional, as discussed
in the last paragraph. This is a limitation of the confor-
mal mapping technique, which only works to evaluate
FEFs of ridge emitters. Besides that, it is also important
to notice that the other results in the literature discussed
along this text concern to emitters with radial symme-
try distant to each other, which is not the case of the
rectangular cathodes studied here. Moreover, since this
manuscript works with emitters with infinity length, it is
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not possible to test whether the parameters in Eq. (3)
and Eq. (5) are universal or change for different values
of the aspect-ratio of the emitters, although the univer-
sality of the expressions given by Eq. (3) and Eq. (5) is
reinforced. This is an interesting future perspective for
the present work.

1.5 2.0 2.5 3.0

d

h

-1.8

-1.6

-1.4

-1.2

-1.0

log(-δ)

FIG. 8. The (blue) filled line represents a restriction of the
plot in Fig. 7 for small values of d/h. The (red) dashed
line shows a linearization obtained from using 20 equidistant
points from the plot in Fig. 7.

0.5 1.0 1.5 2.0 2.5 3.0
log

d

h

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

log(-δ)

FIG. 9. Logarithm of the fractional reduction in the vicinity
of the right upper corner of the emitter showed in Fig. 1
as a function of the logarithm of the ratio d/h for ξ(x, y) =
η(x, y) = 0.0001.

2.2 2.4 2.6 2.8 3.0
log

d

h

-3.8

-3.6

-3.4

-3.2

-3.0

log(-δ)

FIG. 10. The (blue) filled line represents a restriction of the
plot in Fig. 9 for large values of d/h. The (red) dashed
line shows a linearization obtained from using 20 equidistant
points from the plot in Fig. 9.

IV. CONCLUSIONS AND FUTURE
PERSPECTIVES

This present work uses the Schwarz-Christoffel trans-
formation to evaluate the FEF and the fractional reduc-
tion in the vicinity of the upper corner of two rectangular
emitters with infinite length close to each other. This way
it is possible to analytically investigate whether the laws
given by Eq. (3) and Eq. (5) are able to provide a good
description of the fractional reduction during shielding at
short and/or large distances between the emitters.

The results obtained here show that Eq. (5) provides
an excelent fitting to the fractional reduction for large
distances between the emitters, reinforcing the idea that
this quantity fulfills a power-law decay for asymtoptically
large distances. Eq. (3) seems to provide a reasonable
but imperfect fitting to the real curve of the fractional
reduction for small distances between the emitters.

As a limitation of the conformal mapping technique,
only ridge emitters are described in this survey, which
explains the difference between the parameters found
here and in the literature. This difference is not sur-
prising, since the logarithm dependence of the FEF with
the curvature of the emitter in two dimensions differs
considerably from the power-law dependence expected in
the three-dimensional scenario. Nevertheless, the simple
model studied here is able to investigate whether the ex-
ponential or the power-law behave, given by Eq. (3) and
Eq. (5) respectively, are able to describe the fractional
reduction close to the upper corner of the emitters con-
sidered here at different regimes during shielding. More-
over, the validity of Eq. (5) is reinforced even for emitters
without radial symmetry.

Future perspectives of the present survey include to
apply the Schwarz-Christoffel transformation to study
emitters with other geometries and finite length, allow-
ing to investigate the universality of the parameters in
Eq. (3), Eq. (4) and Eq. (5) for different aspect-ratios.
The simple model studied here using emitters with infi-
nite length was successfull to assess the validity of the
aforementioned laws but it is not able to assess the uni-
versality of the parameters in these laws.
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