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Abstract 
 

Near Infrared Spectroscopy (NIRS) is an excellent tool being applied on organic materials for 

quality and process control. Sorting of kiln dried wood based on moisture content has always 

remained a tedious task during industrial production. The current study is centred on evaluation 

of suitability of NIRS for real time sorting of kiln dried wood with broad range of thicknesses 

and moisture content. A partial least square (PLS) regression model was developed including 

a broad range of moisture content and wood thicknesses. Coefficient of determination, Root 

mean square error of cross validation (RMSECV) and ratio of performance deviation (RPD) 

values of the calibration model were 0.966, 2.18 and 5.41 respectively. The results indicated 

that the NIR model could predict moisture content accurately only for moisture content below 

25% for all the thickness ranges. It was found that the deviations in MC from actual values 

significantly depended upon the thicknesses of the wooden specimens used. 

 

Keywords: Near Infrared Spectroscopy (NIRS); Non-Destructive Methodology; Moisture; 

Wood plantation; Melia dubia 

 

Introduction 
 

Near Infrared Spectroscopy (NIRS) is a useful tool being utilised in process monitoring and 

quality control in food and agriculture, pharmaceuticals and material science. Recent 

developments resulting in lower cost, miniature, portable NIRS equipment has drawn attention 

of researchers across academia and industries towards its utilisation for online quality and 
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process control [1]. A review on the application of NIRS in agriculture and forestry and 

suggested that its applications for online or at-line quality monitoring are anticipated to follow 

future developments [2]. 

 

NIRS has been studied and utilised to predict number of wood properties like mechanical and 

chemical [3-4], differentiating juvenile and mature wood [5], wood identification [6] etc. The 

use of NIR spectral imaging techniques for batch testing of small quantities of samples and 

online grading was advocated [7]. 

 

NIRS is based on measurement of absorption of electromagnetic radiation with unique 

wavelength in the range of 750-2500 nm (13333 cm-1 to 4000 cm-1 wave numbers). The 

absorbed spectrum is unique and dependents upon various chemical and physical properties 

which can be correlated using statistical methods of prediction for the quality and process 

control. A predictive model should be accurate and robust for its utilisation in industrial 

operations [8]. Ratio of performance deviation (RPD) has been used frequently for assessing 

the predictive ability of a calibration model [9]. The ratio of reference value standard deviation 

(SD) to standard error of prediction (SEP) is known as the RPD. For a variety of end uses, RPD 

values are widely regarded as a reliable indicator. RPD value was categorised in range of 2.5-

2.9 (recommended for screening purposes), whereas, higher RPD value (3.5-4) is categorised 

as ‘very good’ and is recommended for process control [10]. However, for normally distributed 

variable and large sample size, there is a certain relationship between RPD and R2 of the model 

and concluded that R2 and RPD are the same measures [10].  

 

Various studies have been undertaken in the past on the development of calibration models for 

prediction of moisture content in wood [2,11]. The studies have shown that NIR spectroscopy 

is a useful tool for determining the moisture content of wood. In order to predict the moisture 

content of wood, Thygesen and Lundqvist (2000) [12] assessed the peak shifts along the NIR 

spectra of moist wood specimens generated by regulated temperature fluctuations on NIR 

models. After assessing the viability of using NIR spectroscopy to record NIR spectra on the 

transverse, radial, and tangential surfaces in order to estimate the moisture content of recently 

harvested oak wood, Defo et al. (2007) [13] came to the conclusion that the transverse surface 

produced the best model statistics. Comprehensive literature on the NIR band allocations for 

wood and wood components was reviewed by Schwanninger et al. (2011) [14]. The state of 

the art in NIRS applications for real-time solid wood moisture content and density monitoring 

was reviewed. As long as the spectrometer measures the 1450 nm and 1900 nm water 

absorption bands, as in the majority of the investigations, the prediction of moisture content is 

not significantly influenced by the spectral range employed (Adedipe and Dawson-Andoh, 

2008) [15]. Because derivative spectra can be used to reduce the influence of wood density on 

NIR spectra, at least when the sample is above the fiber saturation threshold, NIRS can be used 

to determine wood moisture content independently of density (So et al. 2004). The moisture 

content of the sapwood of western red cedars (Thuja plicata Donn ex D. Don) was estimated 

by Cooper et al. (2011) [16] using NIRS. 
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Sorting kiln-dried wood for close-range moisture content has always remained a tedious task. 

A kiln batch's final moisture content may not fall within a specified range during kiln drying. 

This might be caused by multiple differences in initial moisture contents, wood from various 

geographic regions, variations in the quality of the wood within a tree, etc. Sorting the kiln-

dried wood thus becomes a crucial stage in industrial production. For businesses that use wood 

as a raw material, the predictive models in this work may be helpful for evaluating wood 

moisture and its fluctuations in real time. For example, in an industrial kiln, it would be feasible 

to immediately assess the variation in moisture content between recently dried wood planks. 

Additionally, managers could choose wood pieces on autopilot that are suitable for adhesives 

or surface finishing of the products based on their moisture content. To determine if the wood 

moisture content has already reached the appropriate level for furniture manufacture or trading, 

predictive algorithms may be employed. 

 

The water in wood is never distributed uniformly, and moisture gradient is formed as drying 

progresses [27]. This moisture gradient becomes steeper as thickness is increased. The NIR 

penetration ability is limited to the wood surface. Hence, the effect of thickness becomes 

significant in the prediction of moisture content using such techniques, as the moisture content 

on the wood surface is lower than that of the wood core. Literature review on the subject 

suggests that the aspect of the effect of the thickness on the accuracy of the NIRS is yet to be 

addressed. In view of the above, the present work aims to extend the studies carried out on the 

NIR’s ability to not only predict moisture content in wood but also investigate its accuracy on 

varying the thickness of the wood. The current study is centred on the evaluation of the 

suitability of NIRS for real-time sorting of kiln-dried wood with a broad range of thicknesses 

and moisture content.  

 

Materials and Methods 
 

Wood specimens 

 

The Forest Research Institute, Dehradun, India (30°20′42′′N 78°01′44′′E) cultivated Melia 

dubia plantations. The area receives 2073.3 mm of rainfall on average annually, with the 

months of July and August seeing the most precipitation. The site's soil has a texture ranging 

from silty loam to silty clay, is highly organic carbon-rich, and is acidic to nearly neutral. Site 

elevation is 410 meters. The average summer temperature is 16.7 to 36oC, whereas the average 

winter temperature is 5.2 to 23.4oC. The plantation had 3 m x 3 m pure planting spacing (1050 

trees/ha). For the investigation, seven-year-old, two trees of the same progeny were selected 

based on a straight, and defect-free-trunk appearance. The trees' average height was 16.6 

meters. The mean diameter at breast height (DBH) was 24 cm. After being felled, the trees 

were cut into 1.5 m round log lengths and were flat-sawn into different thicknesses of sawn 

wood. The thicknesses of the sawn-wood were 8 mm, 13 mm, 18 mm, 23 mm, 28 mm, 33 mm, 

38 mm, and 48 mm. The final thicknesses of the boards were 5 mm, 10 mm, 15 mm, 20 mm, 

25 mm, 30 mm, 35 mm, and 45 mm after they were passed through a planer machine. The clear 

and defect-free planks were further cut into 50 mm x 50 mm2 wooden blocks from each 

thickness, as indicated in Table 1. From the time the trees were felled until the final thicknesses 
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were planned and sawn, it took around three months. After the planning, the specimens were 

submerged in water for 24 h. Thereafter, they were placed in a ventilated room for another one 

day before the first set of spectra was recorded. All the wooden blocks were weighed and 

absorption spectra through NIR instrument were taken immediately. Thus, as the drying of the 

wooden blocks continued, NIR spectra and weights were recorded subsequently. 

 

NIR measurement and wood moisture content determination  

 

FT-NIR spectrophotometer (Brucker, MPA) with wavelength range between 12820 cm-1 and 

4000 cm-1 (780-2400 nm) was used for spectra recording. The instrument works in diffuse 

reflectance mode (resolution: 8 cm-1, detector: Pbs). Spectra of solid wood samples were taken 

using probe of the instrument. Since, for the industrial applications, tangential surfaces of the 

wood are easily available, two positions from both the tangential surfaces were used to take the 

NIR spectra. Each position was used to collect four scans, and the eight scans total were 

averaged into a single spectrum in order to account for the natural variation in the sample. The 

specimens were placed in an oven at temperature of 40oC for drying. The weights and spectra 

of the test specimens were taken intermittently at an interval of 24 h. After three rounds of 

weighing and recording spectra, the test specimens were kept at 103±2 oC, in oven for 24 h till 

the test specimens achieved oven dried weights (till the weights became constant). The oven 

dried weights were used to calculate the actual MC of each wood block. The moisture content 

was calculated using following expression: 

 

MC(%) = 
𝐺𝑤−𝑂𝐷

𝑂𝐷
𝑥100 

 

MC= Moisture content 

Gw= Green weight of the moisture strip 

OD= Oven-dried weight of the moisture strip 

 

PCA scores  

 

Data can be made less dimensional while maintaining as much variance as feasible through the 

use of PCA. The original variables are changed into a set of principle components, which are 

uncorrelated linear combinations. The Unscrambler 10.2 (CAMO, Norway) software was used 

for computing of PCA scores and its presentation to project the data into the sub-space. 

 

Development of calibration model 

 

OPUS 6.5 software was used for multivariate analysis and the development of the NIR 

spectrum based calibration model. For the development of calibration model, out of entire NIR 

spectral range (12820 cm-1 to 4000 cm-1), a range of 5200-7300 cm-1 wave numbers in the 

spectral region was selected, as most of the water (-OH) related vibrations are found to occur 

in this region [14]. 
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The spectrum was pre-processed using the transformation Savitzky-Golay 2nd derivative 

transformation with 17 smoothening points as other pre-processing tools like first derivative, 

Standard Normal Variate (SNV) and Multiplicative scatter correction (MSC) did not yield 

better results than 2nd derivative transformation. Multivariate analysis was carried out using 

partial least square (PLS) regression analysis method to develop predictive model based on 

broad moisture content range. For development of the model, wooden blocks of all thicknesses 

with all MC ranges along with the corresponding spectra were taken for PLS multivariate 

analysis. Using the built-in features of the OPUS software, cross-validation was carried out to 

determine the prediction accuracy of regression model. The error between the predicted and 

actual values for the testing set was then calculated to get the RMSECV.  

 

The root mean square error (RMSE) and Ratio of performance deviation (RPD) can be 

presented as in following equations [15]: 

 

RMSE= √
1

𝑛
∑ (�̂�𝑖 − 𝑦𝑖)2𝑛

𝑖=1  

 

Where, 

 

n = number of samples in the calibration set 

𝑦𝑖=The measured responses,  

�̂�𝑖=The estimated responses obtained through cross-validation or through test samples 

𝑅𝑃𝐷 =  
𝑆𝐷

𝑅𝑀𝑆𝐸
 

Where, 

 

SD= Standard deviation of the calibration or the test samples 

Table 1 presents specimen thickness, and the number of specimens used in calibration and 

testing of the model. 

 

Specimens thickness  
Number of the specimens in used in 

calibration of the model 

Number of the specimens used 

in testing of the model 

5 mm 132 30 

10 mm 100 30 

15 mm 101 30 

20 mm 40 43 

25 mm 39 30 

30 mm 111 40 

35 mm 44 40 

45 mm 117 40 

Total 684 283 

 

Table 1: Details of the test specimens used for calibration and validation of NIR model. 
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Thus, total 967 number of the specimens were divided into a ratio of 70:30 for calibration and 

test specimens. 

 

Testing the model 

 

The spectra of the wood samples of mentioned thicknesses were recorded and run through the 

developed model to obtain the predicted MC%. Actual MC% of these samples were determined 

by conventional method. A comparative analysis of actual and predicted moisture contents was 

done. The test specimens (n=283) were segregated in three groups: first group included test 

specimens in all moisture content range i.e. below 25% and above 25%, second group included 

test samples with moisture content less than 25% and the third one consisted of test specimens 

with moisture content above 25%. Actual versus predicted moisture content plots were plotted 

using MS-Excel. R2 of the prediction and RMSEP were determined for the plots. Using the 

test specimen data (that were not used for calibration), RMSEP was calculated by taking the 

difference between the values that were predicted and those that were actual for these samples. 

The actual MC (oven dried weight basis) and corresponding predicted MC were used to analyse 

the robustness of the calibration model using statistical parameters like R2, RMSEP and RPD 

values. 

 

Analyses of variance (ANOVA) was carried out to compare between various wood thickness 

with the respect to their values of absolute deviations in moisture content between predicted 

and actual values. A post hoc analysis (Duncan’s post hoc test) test was also carried out to find 

out which thicknesses’ absolute moisture content deviation belonged to same class and which 

classes differed. 

 

Results and discussion 
 

The NIR spectral profile and Principal Component Analyses (PCA) 

 

Fig. 1 presents wood raw spectral distribution at low and high moisture content. The most 

prominent attribute that represents water is the OH overtone in the NIR spectra. The 

characteristic absorption bands at 7,692 cm-1 –6,900 cm-1 wave number are due to overtones 

of OH, corresponding to the moisture content in the samples [17]. Figure 1 illustrates the OH 

overtones in the spectral region around 7,000 –6,900 cm-1. These bands represent the moisture 

content present in the wood specimens. It is evident from figure 1 that the change in MC of the 

samples also affected the peak of OH overtone bands. The absorption peak of samples with 

lower moisture content (13-16%) have lower absorbance (represented as red colour) than that 

of the same samples having higher moisture content (above FSP) as represented as blue colour. 
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Figure 1: Spectral profile of 5mm thick wood samples at lower (25% and below) and higher 

(above 25%) moisture content. 

 

Before developing the PLS model, a Principal Components Analysis (PCA) was applied to the 

spectral range of 5200 cm-1 to 7300 cm-1 the spectra acquired after the Savitzky-Golay 2nd 

derivative transformation. Figure 2 illustrates the score plot of the calibration set, where the 

first two principal components account for 93% of the variance in the original data set. Notably, 

the score plots for PC1 and PC2 reveal a clear clustering tendency. Consequently, the 

calibration set is deemed suitable for establishing moisture content variation in wood 

specimens through NIR. Distinctions are observed among the various moisture classes, with 

especially 10-15%, 15-30%, and higher moisture content, like 30-45%, above 45%. Above 

30% moisture content, both classes show an overlapping tendency. Moisture content classes 

10-15% and 15-30% are located closely but show separation tendency. 
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Figure 2: 3D representation of PCA scores. 

 

The Calibration Model  

 

Figure 3 presents the PLS model developed with the help of total 684 test specimens of various 

thicknesses with a broad range (low and high MC) of MC. Many wood specimens showed 

abnormally higher MC than rest of the specimens due to factors like nearness to the pith region, 

partial fungal infections. Most of the such specimens were found to be outliers during model 

development. Before removing all the outliers (n = 76, 11.1% of the total), R2, RMSECV and 

RPD values were 0.824, 7.01 and 2.39. These values improved to 0.966, 2.18 and 5.41 

respectively after removing the outliers. 

 

 
 

Figure 3: Calibration model for MC prediction developed using OPUS 6.5. 
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As per the classification of Williams (2014) [18], RPD value equal to or more than 4.1 is 

classified as ‘excellent’ model and can be used for any application e.g. quality and process 

control. It has also been suggested that models with RPD > 5 are good for quality control [19]. 

Thus, the results obtained indicate that a very robust model for MC prediction was developed. 

The results are comparable with the PLS models developed by Sundaram et al. (2015) [20] 

with RPD and R2 values 4.46 and 0.95 for the moisture content range of 0.63% to 14.16%.  

 

Figure 4 presents frequency diagram (cross validation) of MC deviations from actual MC of 

test specimens (n=608) in cross validation of the model. The mean deviations (absolute values) 

were found to be 1.53 for all the thickness and MC ranges. 

 

 
 

Figure 4: MC% deviations from actual to calibrated model. 

 

The outliers omitted from the model belonged to higher moisture content class (25% to 125%) 

with mean value 52.18%. Most of the outliers had MC% approximately 50%. The fact that no 

outliers belonged to lower MC class (less than 25%), is an indicator that the model will show 

high degree of residuals during validation of higher MC class wood specimens. Figure 5 

presents absolute deviation between the actual MC% values and calibration model. 
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Figure 5: Absolute deviation classes, percentage of the specimens and number of the 

specimens (n). 

 

From Fig. 5, it can be seen that MC% deviations (absolute values) ranged from 0-1% for 

approximately half (50.16%) of the specimens used in development of calibration model, 

followed by 25.32% of the specimens ranged MC deviations from 1.01 to 2%. Thus, 75% of 

the specimens showed absolute deviation by less than 2% MC. A very small fraction of the test 

specimens (less than 10%) deviated in MC from 2.01-3%. Approximately 15% of the test 

specimens’ absolute MC deviation from actual values was more than 3%. 

 

Testing the model for MC prediction 

 

NIR spectra of the test specimens of various thicknesses (Table 1) were used to predict the MC 

using the model. Figure 6 presents the plot for actual MC vs. predicted in broad MC range 

(both lower and higher MC). It can be seen that Rp2 for the relationship is 0.775 with a broader 

RMSEP value (5.34). 64.3 % (n=175) of the validation samples MC were overestimated by 

average 1. 6%± 1.56, whereas, 35.7 % (n=97) of the samples MC were underestimated by 5.8 

%± 6.11.  
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As presented in Fig. 7, the model predicted the test samples with MC% below 25% more 

accurately (RMSEP=1.56). Out of the total, 86.6% of the test samples were overestimated by 

average 1.36%±0.81, whereas, 13.4% of the samples underestimated by 1.06%±1.09. In 

contrary to this, when the test samples with MC% more than 25% were put into the model (Fig. 

8), 77.2% of the test specimens were under estimated by average 7.7%±6.23, whereas, 22.8% 

samples overestimated by average 2.88%. Thus, by and the large, the model shows significant 

error in estimation (under-estimation) for the samples with MC% more than 25%. The two 

spectral peaks at 6993 cm-1 (1430 nm) and 5236 cm-1 (1910 nm), which are attributed to OH 

absorption are due to water [22]. However, the prediction of moisture content is not deeply 

influenced by the spectral range used, as long as the spectrometer measures the 6897 cm-1 and 

5263 cm-1 water absorption bands [22]. Since, in this study the spectral range used for the 

model development taken was 7299 cm-1 to 5200 cm-1, the possibility of error due to selection 

of spectral range looks weak. It was also pointed out that the PLS regression model tended to 

underestimate moisture content ranging from 35% to 105% as measured content increased [23]. 

The non-linearity between actual and predicted MC maybe attributed to the result of steep 

moisture gradient i.e. non-uniformity in moisture distribution across the thickness.  

 

Effect of thickness 

 

Table 2 presents mean deviation of the predicted MC% from actual values, RMSEP, for each 

thickness group (n=8) under two broad categories: MC% less than 25% and MC more than 

25%. It can be seen that Mean deviation (absolute value) from Actual MC % and RMSEP of 

two MC based broad groups are distinct from each other. The range of the mean deviation from 

actual MC for less than 25% of the MC is 0.7-1.75%, while the mean deviation for more than 

25% of the MC is generally larger (2.2-8.87%). 

 

All of the data show that the created NIR model could only reliably estimate moisture content 

when the moisture content was less than 25%. This also indicates that NIRS prediction ability 

at higher moisture content is reduced. 
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Specimens 

thickness  

Broad range MC% 

MC <25% MC>25% 

Mean deviation (absolute value) 

from Actual MC % (±SD) 
RMSEP 

Mean deviation (absolute value) 

from Actual MC % (±SD) 
RMSEP 

5 mm 1.75% (±0.81) 1.92 6.04% (±5.88) 5.86 

10 mm 1.38% (±0.5) 1.46 5.29 (±2.37) 5.73 

15 mm 1.72% (±1.15) 2.05 2.2% (±1.83) 2.79 

20 mm  1.15% (±0.61) 1.31 7.47% (±4.66) 8.68 

25 mm 1.74 % (±1.22) 1.38 3.8% (±2.32) 4.37 

30 mm  1.28 % (±0.52) 1.75 8.87% (±6.62) 2.92 

35 mm 1.4 % (±1.07) 2.23 8.87% (±6.61) 3.38 

45 mm 0.7 % (±0.57) 1.67 7.75% (±8.16) 11.83 

 

Table 2: Wood thickness and predicted MC%. 

 

An interesting trend is observed in both the categories of validation moisture contents; below 

and above 25% as shown in table 4. The test samples below 25% MC were largely over 

estimated (OE), whereas, above 25% test specimens were largely underestimated by the model. 

The proportion of the over/ under estimated specimens was very high (approximately 100%) 

when the thickness was lower (5-15 mm), whereas, as the thickness increased, proportion also 

decreased. For example, when 45 mm thick test specimens were used below 25%, proportion 

of overestimated test specimen was only 73.3%, while for that of above 25%, it was 71.4%. 

 

Thickness  
Below 25% Above 25% 

Mean CV% % of test specimen Mean CV% % of test specimen 

5mm OE: 1.81% (±0.78) 43.1 95.2 
UE: 6.04% 

(±5.88) 
97.4 100 

10 mm OE: 1.41% (±0.5) 35.5 90.9 UE: 5.29 (±2.37) 44.8 100 

15 mm OE: 1.68% (±1.17) 69.6 95.2 UE: 2.48 (±1.94) 78.2 90 

20 mm OE: 1.08% (±0.66) 61.1 84.8 UE: 7.48 (±4.66) 62.3 100 

25 mm OE: 1.21% (±0.75) 62 95.7 UE: 3.87 (±2.53) 65.4 85.7 

30 mm OE: 1.44% (±1.07) 74.3 96.2 UE: 10.28 (±6.5) 63.2 78.6 

35 mm OE: 1.02% (±2.03) 199 82.1 UE: 7.83 (±4.5) 57.5 75 

45 mm OE: 1.40% (±1.4) 100 73.3 UE: 11.02 (±8.79) 79.8 71.4 

 

Table 3: Predicted MC below and above 25% for different thicknesses. 

 

The extent of over-estimation of test samples with lower MC, was very low and ranged from 

1-1.81% with lower SD, whereas, for higher MC%, extent of under estimation was very high 

(2.48-11.02% with higher SD). This indicates inability of NIR radiation to penetrate deeper in 

the wood. The penetration of NIR radiation in solid wood ranges between 1 mm to 5 mm [24-

25]. During drying, the uppermost surfaces of wood dry very fast while deeper layers of the 

wood still remain at very high MC. Coefficient of variation (CV%) in Table 3 shows that for 

below 25% MC, CV% varied from 35.5 to 199.0%, whereas for above 25% MC it varied from 
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44.8% to 97.4%. CV% for below 25% MC shows lower values for lower thicknesses and higher 

value for higher thicknesses. 

 

The absolute deviations in moisture content between predicted and actual values were used for 

ANOVA analysis to find out if these deviations in moisture of different wood thicknesses 

belonged to same population (Null hypothesis) or were significantly distinct from each other 

(Alternate hypothesis). A post hoc analysis (Duncan’s post hoc test) test was also carried out. 

The results indicated that the null hypothesis was not accepted and alternate hypothesis was 

found to be true. The deviations in MC depended upon the thickness (n= 283, df=7, F=5.767, 

p<0.001). Duncan’s post hoc analysis resulted into four sub-sets, out of which two sub-sets (5 

mm, 10 mm and 15 mm in sub-set 1 and 30 mm, 35 mm and 45 mm in sub-set 4) were distinctly 

placed away from each other.  

 

Specimen thickness N 
Subset for alpha = 0.05 

Sub-set 1 Sub-set 2 Sub-set 3 Sub-set 4 

10 mm 30 2.96       

5 mm 30 3.58 3.58     

15 mm 30 1.94 1.94     

20 mm 43   3.87 1.32   

25 mm 30     2.42   

30 mm 40       6.12 

45 mm 40       5.84 

35 mm 40       4.82 

Sig. 0.096 0.088 0.263 0.061 

Means for groups in homogeneous subsets are displayed. 

 

Table 4: Duncan sub-sets (Post hoc test) for absolute deviation between actual and predicted 

values. 

 

In subset 2 and 3, thicknesses sub-sets overlapped like 20 mm was placed. However, 25 mm 

thickness was placed in separate sub-set 3. However, it clearly indicates that absolute deviation 

for higher and lower thicknesses are significantly different from each other. The reason 

attributed to the dependence of accuracy of a NIR model on thickness may again be moisture 

gradient. Thicker the section, steeper will be moisture gradient. This difference in the moisture 

content between core and shell layers may lead to some serious flaws in prediction of higher 

MC levels. Limited penetration can result to a large variation in model predictability and leads 

to strong dependence on sample thickness [26]. 
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Conclusion 
 

A partial least square (PLS) model based on NIR for the prediction of moisture content (MC) 

in the wood of Melia dubia was developed. Statistical analyses showed that the deviations in 

moisture content % from the actual values significantly depended upon the thickness of the 

wood. The chemo-metric model showed high analytical performance with a R2, RMSECV and 

RPD values for the calibration model were 0.966, 2.18 and 5.41 respectively. Coefficient of 

determination for prediction (Rp2) was 0.775 with a broader RMSEP value (5.34) when broad 

moisture content range of validation samples were used. The model predicted the test samples 

with MC% below 25% with Rp2, RMSEP values 0.77 and 1.56. The test samples below 25% 

MC were found to be largely over estimated (OE), whereas, above 25% validation specimens 

showed largely under estimated through the model. The results indicated that the developed 

NIR model can predict moisture content accurately for moisture content below 25%. For higher 

ranges of MC, the accuracy of the model diminished significantly. The moisture content 

prediction ability of NIRS is also influenced by the specimen thickness. In the industrial 

manufacturing, NIRS-based predictive algorithms can incorporate factors such as moisture 

content and wood thickness, as the study shows that the feasibility of using NIRS to assess the 

variation in moisture content for adhesives or surface finishing products, furniture manufacture 

or trading, etc. is limited by these factors. Prediction accuracy is higher at lower moisture and 

wood thicknesses than at higher moisture and higher thicknesses. 
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